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Average entropy of a subsystem from its average Tsallis entropy
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In the nonextensive Tsallis scenario, Page’s conjecture for the average entropy of a subBjgteniRev.
Lett. 71, 1291(1993] as well as its demonstration are generalized, i.e., when a pure quantum system, whose
Hilbert space dimension isin is considered, the average Tsallis entropy ofradimensional subsystem is
obtained. This demonstration is expected to be useful to study systems where the usual entropy does not give

satisfactory results.
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I. INTRODUCTION

PACS nun)er05.70.Ln, 03.65-w, 05.30.Ch, 05.96-m

Many investigations based on the Tsallis entropy have
been developed. A representative set of such developments

Entropy is one of the most ubiquitous quantities in phys-relates to self-gravitating systemi$6], cosmic background
ics. For example, the entropy is fundamental in the study ofadiation[17], peculiar velocities in galaxig4.8], Levy-type
the quantum- and classical-information theories, applied imnomalous superdiffusiofil9], H theorem[20], turbulence
recent developments in telecommunications, computer sc[21], nonlinear anomalous diffusiof22], perturbation and

ence, and engineerin@or a review, se¢1,2]). In particular,

variational methods[23], linear response theonf24],

a great effort has been made to understand the quantum e@reen’s functiong25], and quantum entanglemei6] (for

tanglement of inseparable quantum systg®&]. A tradi-

a recent review see Rdi27)).

tional example of a pure entangled state is the Einstein- Since the Tsallis entropy has played a central role in a
Podolsky-Rosen singlet stafB]. Another interesting aspect nonextensive scenario, such as those cited previously, it is
is to obtain information about the entropy of a subsystem bynatural to investigate this generalized entropy further. A dif-
studying its averagfB,7] over pure states of the big system, ferent reason for investigating the Tsallis entrd§ is to

in unitary Haar measure. For instance, a complete pure sysechnically sneak up on ordinary entrofyyet avoiding its
tem can be identified with a black hole and the radiation fieldannoying logarithm by exploiting thg—1 limit. In any
related to it, in which case the subsystem is the black hole otase, the aim of this work is to obtain the Tsallis entropy of

alternatively the radiation fielf8].

a subsystem averaged over all pure states of the total system

The standard entropy and its corresponding thermostatisising unitary Haar measure to define our averaging. This
tics present serious difficulties when employed to study sysresult generalizes Page’s conject(i6d (a formula for that
tems with a long-range interaction, in particular, when weaverage of the usual entropy of a subsystemd its subse-

deal with gravitational interactiorj9—13. A possible way to

guent demonstratiof28,29. We note that Page’s conjecture

overcome this kind of difficulty is considering a new entropy. for the average entropy of a subsystem has been applied to
As stressed by Lavenda and co-workers, a newly proposeidvestigate black hole radiatidi8]; perhaps our generaliza-

entropy should have concavity propeift¥4]. Such an en-
tropy was considered by Tsalli5].
The Tsallis entropy

1- pf

S9(p;) = D

q-1
recovers the usual entrof§(p;)=S®(p;)=—=,p; Inp; in
the limit g—1 and has a definite concavity for @lvalues
(S'9 is concave forg>0 and convex forg<0). Further-
more, if we consider two independent subsystexrend B,
we have the probabilitiepf;®= p{'p}*, and

Si=S+ S5+ (1- 9SSy, (2

tion can be useful to study parallel reductions to a subsystem
in attempts to fit data with a Tsallig distinct from 1.

To present our generalization, it is useful to first review
Page’s work. This is performed in Sec. Il. Section Il is ad-
dressed to calculate the average Tsallis entropy of a sub-
system. A summary is given in the last section.

Il. AVERAGE ENTROPY OF A SUBSYSTEM

One way to get entropy out of a system in a pure quantum
state is by a coarse graining of dividing the system into two
subsystems and ignoring their correlations. Take the system
AB with Hilbert space dimensiomnand normalized density
matrix pag and divide it into two subsystem& and B, of
dimensionam andn, respectively. The entropy of the system
Ais Sp= —trpaIn pa, where the density matrix of the system

in contrast with the extensive property of the usual entropyA is obtained by taking a partial trace over a total system,
Spg=Sa+ Sg. Thus, the paramete@ygives a measure of the pa=trgpag. In the same waySg= —trpgInpg, with pg
nonextensivity induced by the Tsallis entropy. In this context,=trypag. If the systemAB is in a pure state, the§,g=0
it is common to employ the jargon “nonextensive” to refer to andS,= Sg as a consequence of the fact tpatandpg have

the scenario when the Tsallis entropy is present.
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the same set of nonzero eigenvall86]. Unless the two
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systems are uncorrelated in the quantum sepsg=pa
®pg, In which caseS,=Sg=0), a full quantum analysis is
necessary in order to obtay andSg, which can be cum-

bersome. Yet it is sometimes easy to calculate the unitary

Haar average entropy of the subsystaraver all pure states
of the total systemS;, ,=(Sa), and consequently also the

average information of the subsystem, i.e., the deficit of the

average entropy from the maximuy, ,=Sn.,—(Sa), with

Smax: Spi=1/m).
For m=n, Page showed that

Sm,n=f S(P)P(P1;---Pm)dP;-..dPm, )

whereS(p;)=—={",p;Inp;, andP(ps,...,pm) is the prob-
ability distribution of the eigenvalues ¢fy for the random
pure statep g Of the entire systen6,7],

m

1-> Pl) 11
t=1 1<i<j=m

m
X(pi—p;)zk[ll PR "dpy.

P(pl,...,pm)dpl...dpmzNB(

(4)

In Eq. (3), as well as in the following integrals, the integra-

tion limits are 0 and«. In the above equationN
=1/P(ps1,..-,.Pm)dpP;...dpy, is the normalization constant.
By using the identity E(fr"Me""dr)/

(mnfr"™%e~'dr) and the polygamma function?(mn
+1)=(fInrr"e""dr)/(mnfr"™ e "dr), we can write Eq(3)
as

f e‘rr”‘”Ei pi INPiP(Py,....pmdp;...dpydr

Sm,n:_
an e "™ 1p(py,....pm)dp;...dpydr

f Inre "r""P(pq,....pm)dps...dpmdr

mnj e T P(py,....pmdp;...dpydr
0

+W¥(mn+1). 5

Taking into account thak;p;=1, we can introduce the new
variablesx;=rp; ; then, by using the function to evaluate
the integral inr, we obtain

fS(xi)Q(xl,...,xm)dxl...dxm
Smn=¥(mn+1)-—

mnf Q(Xq,. e Xm)dXq ...d X,
(6)

with
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[1

2
11 (Xi_xj)
1<i<j<m

Q(Xq,--

X)) dXq .. dXp=

m
<[] e Mdx.. (7)
k=1

Page conjecture{6], and other authors prove@8,29,
that the exact result is

mn

>

=n+1

1 m-1

Smn=, X on ®

Page had meanwhile applied this to calculate the information
in black hole radiatioh8]. It was considered a pure compos-
ite total state with a fixed dimensiamn, composed of the
black hole and the radiation. The radiation subsystem has
dimensionm and the black hole one has dimensienThe
average information in the smaller subsystéor example,

if you have k<m=n) is |, =S}, (S)~m2n. If further-
morem<n, the smaller subsystem is very nearly maximally
mixed, and has very little information in it. The information
increases for higher dimension of the smaller subsystem.

Ill. AVERAGE TSALLIS ENTROPY

In this work, the above result is generalized to “the non-
extensive case” as defined by replacing the usual entropy
[S(p))] in Eq. (3) by the Tsallis entropy S{9(p;)]. After
similarly introducing the variables, =rp; in this generaliza-
tion of Eq. (3), we obtain

1 1 I'(mn)
(a) _ _ (@
Sm g—1 g-1T(mn+q) ™" ©)
where
m
Ih= (10)

f Q(Xl,...,Xm)dxl...de

This expression can be written as a one-dimensional integral
in terms of the one-point correlation function of a Laguerre
ensemble of complex Hermitian random matri¢84]. By
considering the symmetry of and the van der Monde de-
terminantA (x) =11 <i < j<m(Xi —X;), Eq.(10) reduces to

In= f dxyxdx(xy), (11)
where
m
mj |Am(x)|2k1:[1 ,U«(Xk)dXZ...de
x(X1)= o (12)
f|Am(X)|2k1:I1 (X dXg ...dX,
with a weight functionu(x)=x"""e . This integration

gives
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where L7 (x) are the associated Laguerre polynomie&4]

m! o _
X(X1)= mxg Mo X{Ln-T  (x)]? (see also Ref28]).
N N The remaining integration ia{®), , Eq.(11), can be evalu-
—Lm—2 T(X)Ly "X} (13)  ated by taking the following resul82]:

min(r,s)

fmx"e‘XL?(x)Lf(x)dx= > (—1)s
0

00—«

r—k (14

60— B\ T'(0+k+1)
(s—k) k! '

where 6> —1, a and B are real parameters; and the brackets are binomial coefficients whose factorials of nonintegers or

integers< 0 are interpreted through the usuwAk=T"(z+1).
We finally get to our goal, a computationally explicit generalization of Page’s conjecture as well as its demonstration, i.e.,

Sﬁﬁ)= 1 3 1 I'(m+21)I'(mn)
" g-1 g-1T'(nI'(mn+q)

m_l( q-1 )ZF(n—m+q+1+k) m—Z( q-1 )(q—l)I‘(n—m+q+1+k)
k=0 k=0

m—1-k k! m—2-k/\ m—k Kl (15

X

for m=n.
In the following, we discus$, mainly its dependence an Note that Page’s result, E¢B), is recovered frons{% by
taking the appropriate limitd— 1), i.e., in this limit, Eq.(15) reduces to

mt T(n—m+2+k)
&6 [T(M—K)T(k—m+2)]%k!

I'(m+1)I'(mn)
I'(n)['(mn+1)

Sy =¥(mn+1)-

X[2W(1) - 2% (k—m+2)+ ¥ (n—m+2+k)]

T'(m+1)T(mn) [ ™22 T(n—m+2+k)
rimr'mn+1) | o F'(m—k+1L)I'(k—=m+21)I'(m—k—1)I"(k—m+ 3)k!
X{2¥(1) -V (k—m+1)—V(3—m+k)+W¥(n—m+2+k)}|. (16
|
In the above equation, the only nonvanishing term in the r'(q) I'(n+q-k)
summation is that one correspondingktonaximum, so that X(F(2+k)l“(q—1—k)> (m=1—K)! } 17

we obtainS{¥ V=¥ (nm+1)—¥(n+1)—(m—1)/2n. By

. , n - )
Es'lng, the retlatlinn\lf(nthll)D—E%:Ol/k It% where y is the Note that the second sum only gives contribution &pr
u ershcons ant, we geh ages resu (‘Z’) EB? =3,4,5,.... In particular, fog=2, the Tsallis entropy leads

Furthermore, as in the casp=1, Sy, also assumes a ; e quadratic entropy. This entropy was first used in the-

simple form whenq is a positive integer. This is a conse- getical physics by Fermisee Ref[33]). In this case, Eq.
guence of poles of thE(x) function for negative integers (17) reduces td34]

Thus, in the cases af=2,3,4,..., Eq(15) reduces to
n+m

q=2)_1 _
S(m'“ 1 mn+1°

o 1 1 T(m+1)I'(mn) (18)

m'”:q—l_ g—1I'(n)'(mn+q)

If we observe that the maximum entropy, obtained when

y i ( I'(q) ’T'(n+q+1-k) p;=1/m, is given by S@M=(1-m'~9%/(q—1), the average
S\ T (KT (g+1-k) (m—k)! information,Iﬁﬁ)n=8§ﬂ2£2—<s(ﬁ)>, forq=2is
q-2
I'(q) ) 1 m+n)| 1
b (F(k)F(q+1—k) mn (1 m) (1 i) a9
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FIG. 1. (a) Plot of (S{?) versusmto q=0.5,q=0.8,q=1, q
=1.2, andg= 1.5 withmn=291 600.(b). Plot of (S{¥) versusS{?,
to g=0.8,g=1 andq=1.2 with mn=291 600.

for mn>1. Observe that fomn>1, 1192 is a power law
with only n dependence. Thus, for a systékB with fixed
mn dimension, a log-log plot of 9% versusm gives a
straight line.

For an arbitraryq value, Eq.(15) does not reduce to a
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FIG. 2. (8 Plot of I(®), versusm to q=0.5,q=1, q=1.5,q
=2, andg=2.5 with mn=291 600.(b) Plot of |(#, versuss&, to
g=0.8,g=1, andg=1.2 with mn=291 600.

S@ versusmthenS@ versusS{%,, in Fig. 1, andl (9 versus

mthen! (@ versusS%, in Fig. 2. The straightness shown by
the triangles in Fig. @) illustrates the casgq=2 as a sepa-
ration between two different regimes. In general, calculations
based on the nonextensive Tsallis entropy have been ad-
dressed in the study of systems with a long-range interaction,

simple form, so we show some graphs instead. For examplgpatiotemporal complexity, and fractal structure; thus, we
consider a total system with fixed Hilbert space dimensiorhope our result may be useful for such systems.

mn= 291 600(about the number of states very naively ex-

pected for a black hole near the Planck mi@ds In the case
of a total pure state, we ha\(Sff‘))=<S(BQ)>=S§,?])n if m=n,
and (SP)=(SMy=s{® if m=n, whereS\, is given by
Eq. (15) and S{%, is obtained from it by performing the ex-
changem«n. In Fig. 1, we plot Si?) for some representa-
tive g values. Figure 2 shows the average informatigfh to
differentq values.

IV. SUMMARY

More formal applications of thg—1 limit to derive or-
dinary entropies, may also turn out feasible, for kinds of
averaging other than Haar unitary, in particular, for time av-
eraging under Gaussian-distributed Hamiltonians that do not
discriminate betweem system anch system, and also for
similar distributions that, instead, do discriminate so as to
model approximate mutual isolation. In both cases, results
for g=2 are known[35] and theq— 1 limit would be wel-
come. Such further applications would be analogous to our
demonstration in this present paper of Page’s conjecture, in
being independent of the issue of whether the Tsallis entropy
for q# 1 is or is not directly applicable to physical situations.

Summing up, we have generalized Page’s conjecture and
its demonstration in order to incorporate the nonextensive

regime induced by the Tsallis entropy. Naturally, this result

must and does reduce to the usual one in the lgnitl. For
other representativg values andmn still fixed at 291 600,
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