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Average entropy of a subsystem from its average Tsallis entropy
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In the nonextensive Tsallis scenario, Page’s conjecture for the average entropy of a subsystem@Phys. Rev.
Lett. 71, 1291~1993!# as well as its demonstration are generalized, i.e., when a pure quantum system, whose
Hilbert space dimension ismn, is considered, the average Tsallis entropy of anm-dimensional subsystem is
obtained. This demonstration is expected to be useful to study systems where the usual entropy does not give
satisfactory results.
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I. INTRODUCTION

Entropy is one of the most ubiquitous quantities in ph
ics. For example, the entropy is fundamental in the study
the quantum- and classical-information theories, applied
recent developments in telecommunications, computer
ence, and engineering~for a review, see@1,2#!. In particular,
a great effort has been made to understand the quantum
tanglement of inseparable quantum systems@3,4#. A tradi-
tional example of a pure entangled state is the Einst
Podolsky-Rosen singlet state@5#. Another interesting aspec
is to obtain information about the entropy of a subsystem
studying its average@6,7# over pure states of the big system
in unitary Haar measure. For instance, a complete pure
tem can be identified with a black hole and the radiation fi
related to it, in which case the subsystem is the black hol
alternatively the radiation field@8#.

The standard entropy and its corresponding thermost
tics present serious difficulties when employed to study s
tems with a long-range interaction, in particular, when
deal with gravitational interactions@9–13#. A possible way to
overcome this kind of difficulty is considering a new entrop
As stressed by Lavenda and co-workers, a newly propo
entropy should have concavity property@14#. Such an en-
tropy was considered by Tsallis@15#.

The Tsallis entropy

S~q!~pi !5

12(
i

pi
q

q21
~1!

recovers the usual entropyS(pi)5S(1)(pi)52( i pi ln pi in
the limit q→1 and has a definite concavity for allq values
(S(q) is concave forq.0 and convex forq,0!. Further-
more, if we consider two independent subsystemsA and B,
we have the probabilitiespi j

AB5pi
Apj

B , and

SAB
~q!5SA

~q!1SB
~q!1~12q!SA

~q!SB
~q! , ~2!

in contrast with the extensive property of the usual entro
SAB5SA1SB . Thus, the parameterq gives a measure of th
nonextensivity induced by the Tsallis entropy. In this conte
it is common to employ the jargon ‘‘nonextensive’’ to refer
the scenario when the Tsallis entropy is present.
1063-651X/2002/65~4!/046131~5!/$20.00 65 0461
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Many investigations based on the Tsallis entropy ha
been developed. A representative set of such developm
relates to self-gravitating systems@16#, cosmic background
radiation@17#, peculiar velocities in galaxies@18#, Lévy-type
anomalous superdiffusion@19#, H theorem@20#, turbulence
@21#, nonlinear anomalous diffusion@22#, perturbation and
variational methods@23#, linear response theory@24#,
Green’s functions@25#, and quantum entanglement@26# ~for
a recent review see Ref.@27#!.

Since the Tsallis entropy has played a central role in
nonextensive scenario, such as those cited previously,
natural to investigate this generalized entropy further. A d
ferent reason for investigating the Tsallis entropyS(q) is to
technically sneak up on ordinary entropyS, yet avoiding its
annoying logarithm by exploiting theq→1 limit. In any
case, the aim of this work is to obtain the Tsallis entropy
a subsystem averaged over all pure states of the total sy
using unitary Haar measure to define our averaging. T
result generalizes Page’s conjecture@6# ~a formula for that
average of the usual entropy of a subsystem! and its subse-
quent demonstration@28,29#. We note that Page’s conjectur
for the average entropy of a subsystem has been applie
investigate black hole radiation@8#; perhaps our generaliza
tion can be useful to study parallel reductions to a subsys
in attempts to fit data with a Tsallisq distinct from 1.

To present our generalization, it is useful to first revie
Page’s work. This is performed in Sec. II. Section III is a
dressed to calculate the average Tsallis entropy of a s
system. A summary is given in the last section.

II. AVERAGE ENTROPY OF A SUBSYSTEM

One way to get entropy out of a system in a pure quant
state is by a coarse graining of dividing the system into t
subsystems and ignoring their correlations. Take the sys
AB with Hilbert space dimensionmnand normalized density
matrix rAB and divide it into two subsystemsA and B, of
dimensionsm andn, respectively. The entropy of the syste
A is SA52trrA ln rA , where the density matrix of the syste
A is obtained by taking a partial trace over a total syste
rA5trBrAB . In the same way,SB52trrB ln rB , with rB
5trArAB . If the systemAB is in a pure state, thenSAB50
andSA5SB as a consequence of the fact thatrA andrB have
the same set of nonzero eigenvalues@30#. Unless the two
©2002 The American Physical Society31-1
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systems are uncorrelated in the quantum sense~rAB5rA
^ rB , in which caseSA5SB50!, a full quantum analysis is
necessary in order to obtainSA andSB , which can be cum-
bersome. Yet it is sometimes easy to calculate the uni
Haar average entropy of the subsystemA over all pure states
of the total system,Sm,n5^SA&, and consequently also th
average information of the subsystem, i.e., the deficit of
average entropy from the maximum,I m,n5Smax

m 2^SA&, with
Smax

m 5S(pi51/m).
For m<n, Page showed that

Sm,n5E S~pi !P~p1 ,...,pm!dp1 ...dpm , ~3!

whereS(pi)52( i 51
m pi ln pi , andP(p1 ,...,pm) is the prob-

ability distribution of the eigenvalues ofrA for the random
pure statesrAB of the entire system@6,7#,

P~p1 ,...,pm!dp1 ...dpm5NdS 12(
t51

m

pl D )
1< i , j <m

3~pi2pj !
2)

k51

m

pk
n2mdpk .

~4!

In Eq. ~3!, as well as in the following integrals, the integr
tion limits are 0 and `. In the above equation,N
51/*P(p1 ,...,pm)dp1 ...dpm is the normalization constant

By using the identity 15(*r nme2rdr)/
(mn*r nm21e2rdr) and the polygamma functionC(mn
11)5(* ln rr nme2rdr)/(mn*rnm21e2rdr), we can write Eq.~3!
as

Sm,n52

E e2r r mn(
i

pi ln pi P~p1 ,...,pm!dp1 ...dpmdr

mnE e2r r mn21P~p1 ,...,pm!dp1 ...dpmdr

2

E ln re2r r mnP~p1 ,...,pm!dp1 ...dpmdr

mnE
0

`

e2r r mn21P~p1 ,...,pm!dp1 ...dpmdr

1C~mn11!. ~5!

Taking into account that( i pi51, we can introduce the new
variablesxi5rpi ; then, by using thed function to evaluate
the integral inr, we obtain

Sm,n5C~mn11!2

E S~xi !Q~x1 ,...,xm!dx1 ...dxm

mnE Q~x1 ,...,xm!dx1 ...dxm

,

~6!

with
04613
ry

e

Q~x1 ,...,xm!dx1 ...dxm5 )
1< i , j <m

~xi2xj !
2

3)
k51

m

e2xkxk
n2mdxk . ~7!

Page conjectured@6#, and other authors proved@28,29#,
that the exact result is

Sm,n5 (
k5n11

mn
1

k
2

m21

2n
. ~8!

Page had meanwhile applied this to calculate the informa
in black hole radiation@8#. It was considered a pure compo
ite total state with a fixed dimensionmn, composed of the
black hole and the radiation. The radiation subsystem
dimensionm and the black hole one has dimensionn. The
average information in the smaller subsystem~for example,
if you have 1!m<n! is I r5Smax

m 2^Sr&'m/2n. If further-
morem!n, the smaller subsystem is very nearly maxima
mixed, and has very little information in it. The informatio
increases for higher dimension of the smaller subsystem

III. AVERAGE TSALLIS ENTROPY

In this work, the above result is generalized to ‘‘the no
extensive case’’ as defined by replacing the usual entr
@S(pi)# in Eq. ~3! by the Tsallis entropy@S(q)(pi)#. After
similarly introducing the variablesxi5rpi in this generaliza-
tion of Eq. ~3!, we obtain

Sm,n
~q! 5

1

q21
2

1

q21

G~mn!

G~mn1q!
Jm,n

~q! , ~9!

where

Jm,n
~q! 5

E (
i 51

m

xi
qQ~x1 ,...,xm!dx1 ...dxm

E Q~x1 ,...,xm!dx1 ...dxm

. ~10!

This expression can be written as a one-dimensional inte
in terms of the one-point correlation function of a Lague
ensemble of complex Hermitian random matrices@31#. By
considering the symmetry ofxi and the van der Monde de
terminantDm(x)5P1< i , j <m(xi2xj ), Eq. ~10! reduces to

Jm,n
~q! 5E dx1x1

qx~x1!, ~11!

where

x~x1!5

mE uDm~x!u2)
k51

m

m~xk!dx2 ...dxm

E uDm~x!u2)
k51

m

m~xk!dx1 ...dxm

~12!

with a weight functionm(x)5xn2me2x. This integration
gives
1-2
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x~x1!5
m!

~n21!!
x1

n2me2x$@Lm21
n2m11~x1!#2

2Lm22
n2m11~x1!Lm

n2m11~x1!%, ~13!
th

-

04613
whereLr
a(x) are the associated Laguerre polynomials@31#

~see also Ref.@28#!.
The remaining integration inJm,n

(q) , Eq.~11!, can be evalu-
ated by taking the following result@32#:
gers or

on, i.e.,
E
0

`

xue2xLr
a~x!Ls

b~x!dx5 (
k50

min~r ,s!

~21!r 1sS u2a
r 2k D S u2b

s2k D G~u1k11!

k!
, ~14!

whereu.21, a and b are real parameters; and the brackets are binomial coefficients whose factorials of noninte
integers< 0 are interpreted through the usualz! 5G(z11).

We finally get to our goal, a computationally explicit generalization of Page’s conjecture as well as its demonstrati

Sm,n
~q! 5

1

q21
2

1

q21

G~m11!G~mn!

G~n!G~mn1q!

3F (
k50

m21 S q21
m212kD 2 G~n2m1q111k!

k!
2 (

k50

m22 S q21
m222kD S q21

m2kD G~n2m1q111k!

k! G ~15!

for m<n.
In the following, we discussSmn

(q) , mainly its dependence onq. Note that Page’s result, Eq.~8!, is recovered fromSmn
(q) by

taking the appropriate limit (q→1), i.e., in this limit, Eq.~15! reduces to

Sm,n
~q→1!5C~mn11!2

G~m11!G~mn!

G~n!G~mn11! F (
k50

m21
G~n2m121k!

@G~m2k!G~k2m12!#2k!

3@2C~1!22C~k2m12!1C~n2m121k!#G
1

G~m11!G~mn!

G~n!G~mn11! F (
k50

m22
G~n2m121k!

G~m2k11!G~k2m11!G~m2k21!G~k2m13!k!

3$2C~1!2C~k2m11!2C~32m1k!1C~n2m121k!%G . ~16!
he-
In the above equation, the only nonvanishing term in
summation is that one corresponding tok maximum, so that
we obtainSm,n

(q→1)5C(nm11)2C(n11)2(m21)/2n. By
using the relationC(n11)5Sk50

n 1/k2g, where g is the
Euler’s constant, we get Page’s results, Eq.~8!.

Furthermore, as in the caseq51, Smn
(q) also assumes a

simple form whenq is a positive integer. This is a conse
quence of poles of theG(x) function for negative integersx.
Thus, in the cases ofq52,3,4,..., Eq.~15! reduces to

Sm,n
~q! 5

1

q21
2

1

q21

G~m11!G~mn!

G~n!G~mn1q!

3F (
k51

q S G~q!

G~k!G~q112k! D
2 G~n1q112k!

~m2k!!

2 (
k51

q22 S G~q!

G~k!G~q112k! D
e
3S G~q!

G~21k!G~q212k! D G~n1q2k!

~m212k!! G . ~17!

Note that the second sum only gives contribution forq
53,4,5,... . In particular, forq52, the Tsallis entropy leads
to the quadratic entropy. This entropy was first used in t
oretical physics by Fermi~see Ref.@33#!. In this case, Eq.
~17! reduces to@34#

Sm,n
~q52!512

n1m

mn11
. ~18!

If we observe that the maximumq entropy, obtained when
pi51/m, is given by Smax

(q)m5(12m12q)/(q21), the average
information,I m,n

(q) 5Smax
(q)m2^SA

(q)&, for q52 is

I m,n
~q52!5S 12

1

mD2S 12
m1n

mn11D'
1

n
, ~19!
1-3
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for mn@1. Observe that formn@1, I m,n
(q52) is a power law

with only n dependence. Thus, for a systemAB with fixed
mn dimension, a log-log plot ofI m,n

(q52) versusm gives a
straight line.

For an arbitraryq value, Eq.~15! does not reduce to a
simple form, so we show some graphs instead. For exam
consider a total system with fixed Hilbert space dimens
mn5291 600~about the number of states very naively e
pected for a black hole near the Planck mass@8#!. In the case
of a total pure state, we have^SA

(q)&5^SB
(q)&5Sm,n

(q) if m<n,
and ^SA

(q)&5^SB
(q)&5Sn,m

(q) if m>n, whereSm,n
(q) is given by

Eq. ~15! andSn,m
(q) is obtained from it by performing the ex

changem↔n. In Fig. 1, we plot̂ SA
(q)& for some representa

tive q values. Figure 2 shows the average informationI m,n
(q) to

different q values.

IV. SUMMARY

Summing up, we have generalized Page’s conjecture
its demonstration in order to incorporate the nonextens
regime induced by the Tsallis entropy. Naturally, this res
must and does reduce to the usual one in the limitq→1. For
other representativeq values andmn still fixed at 291 600,
average entropy and average information are log-log plot

FIG. 1. ~a! Plot of ^SA
(q)& versusm to q50.5, q50.8, q51, q

51.2, andq51.5 withmn5291 600.~b!. Plot of ^SA
(q)& versusSmax

(q)

to q50.8, q51 andq51.2 with mn5291 600.
04613
le,
n

nd
e

lt

d,

S(q) versusm thenS(q) versusSmax
(q) in Fig. 1, andI (q) versus

m then I (q) versusSmax
(q) in Fig. 2. The straightness shown b

the triangles in Fig. 2~a! illustrates the caseq52 as a sepa-
ration between two different regimes. In general, calculatio
based on the nonextensive Tsallis entropy have been
dressed in the study of systems with a long-range interact
spatiotemporal complexity, and fractal structure; thus,
hope our result may be useful for such systems.

More formal applications of theq→1 limit to derive or-
dinary entropies, may also turn out feasible, for kinds
averaging other than Haar unitary, in particular, for time a
eraging under Gaussian-distributed Hamiltonians that do
discriminate betweenm system andn system, and also for
similar distributions that, instead, do discriminate so as
model approximate mutual isolation. In both cases, res
for q52 are known@35# and theq→1 limit would be wel-
come. Such further applications would be analogous to
demonstration in this present paper of Page’s conjecture
being independent of the issue of whether the Tsallis entr
for qÞ1 is or is not directly applicable to physical situation
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FIG. 2. ~a! Plot of I m,n
(q) versusm to q50.5, q51, q51.5, q

52, andq52.5 with mn5291 600.~b! Plot of I m,n
(q) versusSmax

(q) to
q50.8, q51, andq51.2 with mn5291 600.
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Aptekarev, and V. Buyarov, J. Math. Phys.39, 3050~1998!; H.
A. Mavromatis and R. S. Alassar, Appl. Math. Lett.14, 903
~2001!; P. M. Morse and H. Feshbach,Methods of Mathemati-
cal Physics~McGraw-Hill, New York, 1953!, Vol. 1. p. 785.
The specific form employed here, Eq.~14!, is given in Eq.~17!
of
Ref. @28#.

@33# G. Jumarie,Relative Information~Springer, Berlin, 1990!,
p. 31, Eq. 2.11.3.

@34# E. Lubkin, J. Math. Phys.19, 1028~1978!.
@35# E. Lubkin and T. Lubkin, Int. J. Theor. Phys.32, 933 ~1993!.
1-5


